Presentation Two

Department of Mechanical Engineering
RGB Flow Sensor Team
Gavynn Breed
Ryan Schuster
Yixiang Zhang
Hengling Zhu

Project Description

The purpose of this project is to create a red, green, blue (RGB) light system in order to illuminate flow so that a camera can detect the flow. The system must have three separate channels that control the different colors individually and must operate within a \$1000 budget.

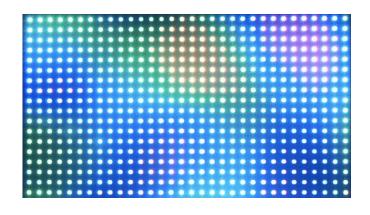


Figure 1: LED array

Project Description: Black Box

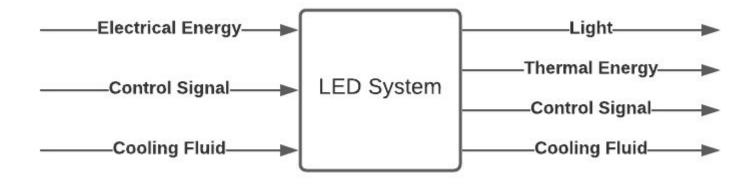


Figure 2: LED Black Box

Project Description: Functional Model

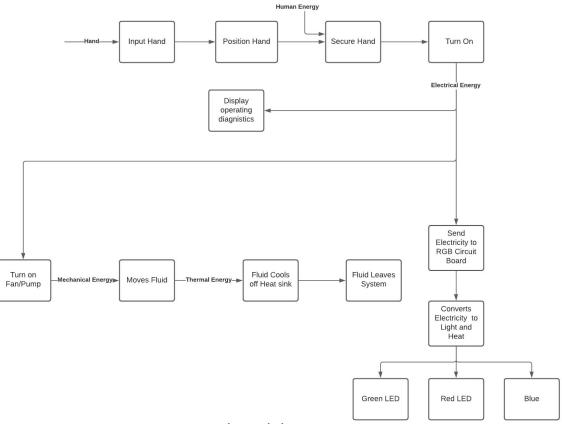


Figure 3: Decompositional Model

Gavynn, 10/5/21, RGB Flow Sensor Team, 21F11

Concept Generation

Table 1: Morphological Matrix

LED Housing	Circular	Rectangular	Triangular	Lego
Cooling	Many Small	Some Medium	One Large	Coolant
Packing	Tight	Loose	Bayern	RGB Chip
Heat Sink	Pin Fin	Rectangular Fin	তি coolant Reservoir	Fins and Reservoir

CV #1

Benefits:

- Stronger Light Intensity
- Good cooling

Disadvantages:

- Manufacturing cost
- Manufacturing

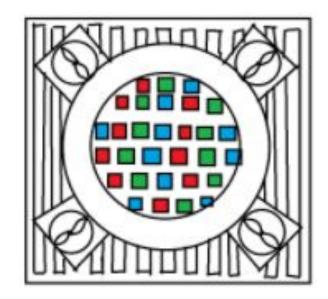
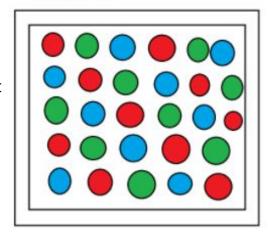


Figure 4: CV #1

Gavynn, 10/5/21, RGB Flow Sensor Team, 21F11

CV #5


Benefits:

- Good light Intensity
- Easy Manufacturing
- Lower Manufacturing cost
- Durability

Disadvantages:

- Cooling
- Safety

Front view

Back view

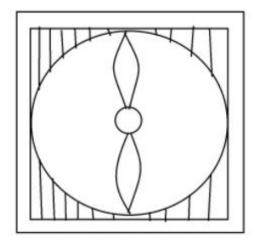
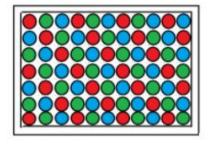
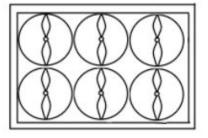


Figure 5 : CV #5

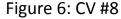
Yixiang, 10/5/21, RGB Flow Sensor Team, 21F11


CV #8

Benefits:


- Easier manufacturing
- Manufacturing cost low
- Light intensity good

Disadvantages:


- Harder to assemble more fans
- Lower durability

Front view

Back view

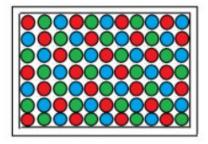
Hengling, 10/5/21, RGB Flow Sensor Team, 21F11

Concept Evaluation

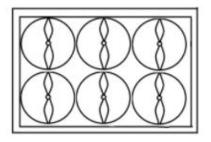
Table 2: Pugh Chart

1/1	1/1				Concepts	i e	Pr	h	
Selection Criteria		1	2	3	4	5	6	7	8
Cost		Datum		-	¥	+	Mr.	Ξ.	S
Light Intensity				E.	S	+	S		+
Durability				3 0	S	S	₹5	P	S
Size			7	=:	-	+	5 .	5	+
Cooling Performance			+	+	+	<u> </u>	+	+	S
Safety			+	+	+	S	+	2	S
Total +			2	2	2	3	2	1	2
Total -			4	4	2	1	3	5	0
Total s			0	0	2	2	1	0	4
Scores		0	-2	-2	0	2	-1	-4	2

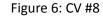
Concept Evaluation



	20%	CV 1		CV 5		CV 8	
	Weights	Raw Score	Weighted Score	Raw Score	Weighted Score	Raw Score	Weighted Score
Cost	20%	4	0.8	7	1.4	6	1.2
Light Intensity	30%	8	2.4	6	1.8	6	1.8
Durability	10%	6	0.6	7	0.7	5	0.5
Size	5%	6	0.3	8	0.4	8	0.4
Cooling Performance	20%	6	1.2	5	1	8	1.6
Safety	15%	6	0.9	6	0.9	6	0.9
Total		36	6.2	39	6.2	39	6.4
Relative rank			3		2		1



Final Design Choice


CV#8

Front view

Back view

Rough CAD

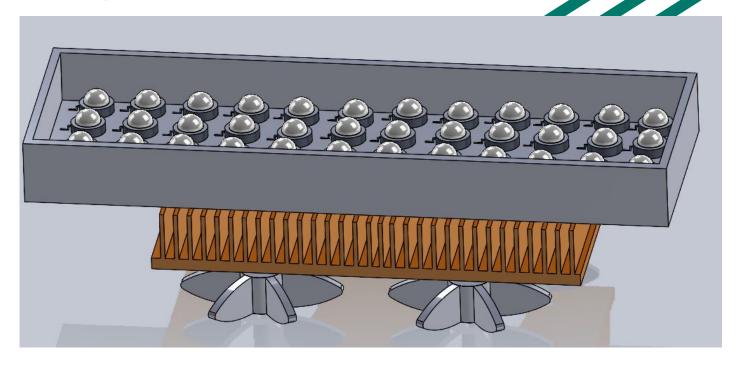


Figure 7: Rough CAD Model

LED Selection

Figure 8: Cree Xlamp XM-L Color

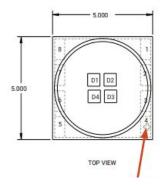


Figure 9: LED top view with pin layout

- Small surface mounted LED with a high efficacy.
- 25 mm² allows for tightly compacting the LEDs in order to collimate the Light
- 111 Lm/W at peak conditions is highly efficient for this size of LED
- Contains a Red , Green ,Blue and White channel

Preliminary Circuit Design

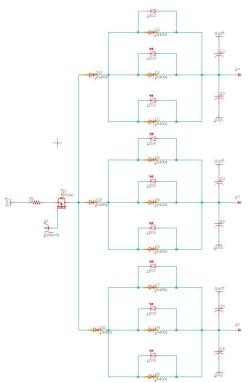


Figure 10: Full circuit Sample

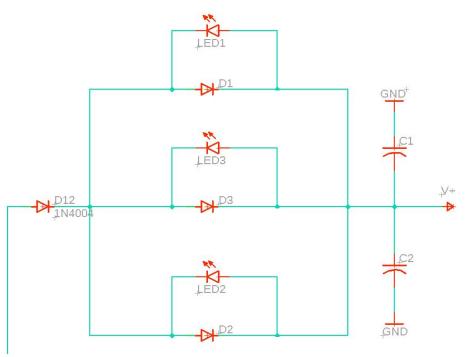


Figure 11: Single Channel Sample

Ryan, 10/5/21, RGB Flow Sensor Team, 21F11

Budget Planning

Table 4: Bill of Materials

No.	Qt.	Name	Function	Cost
1	75	LED chip	Convert the electrical energy into light	\$300
2	1	Heat sink	Fill gaps between the fan and cooling part, make cooling more efficient	\$52
3	3	Fan	Push air and keep cooling	~\$150
4	1	Circuit board	Control the system	~\$150
5	3	BNC I/O port	Cable Input port for the TTL signal	\$5
6	3	Rectifier Diode	Keep the current from flowing in reverse through the LEDs	\$2
7	1	Mosfet	An N-Channel power mosfet to stabilize the pulse input.	\$5
8	1	Resistors	Circuit component	\$1
9	6	Capacitors	Circuit component	\$15
10	1	Housing	Hold the system together	\$30
Tota	l Budg	get (\$1000)		\$705

- Roughly 70% of the total budget will go to the final solution.
- The Fan and Circuit Board costs are mostly unknown at the moment and were set to a high value until decided upon.
- As a contingency for shipping costs 10% of the budget will be set aside (\$100).
- The remaining 20% of the budget will be used in case of part failures.

QUESTIONS?